// This file is part of netaddr. // // netaddr is free software: you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License as published by the // Free Software Foundation, either version 3 of the License, or (at your // option) any later version. // // netaddr is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public // License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with netaddr. If not, see . module netaddr import encoding.binary import math.big import net const max_u128 = big.integer_from_bytes([]u8{len: 16, init: 0xff}) pub struct Ipv6Addr { addr [16]u8 pub: zone_id ?string // the IPv6 scope zone identifier per RFC 4007 } // Ipv6Addr.new creates new Ipv6Addr instance from eight 16-bit segments with optional // scope zone_id. // Example: // ``` // import netaddr // // ip := netaddr.Ipv6Addr.new(0x2001, 0x0db8, 0x0008, 0x0004, 0x0000, 0x0000, 0x0000, 0x0002)! // println(ip) // 2001:db8:8:4::2 // ``` pub fn Ipv6Addr.new(a u16, b u16, c u16, d u16, e u16, f u16, g u16, h u16, params Ipv6AddrParams) !Ipv6Addr { params.validate()! mut addr := [16]u8{} mut one := [2]u8{} mut nr := 0 for segment in [a, b, c, d, e, f, g, h] { binary.big_endian_put_u16_fixed(mut one, segment) addr[nr] = one[0] addr[nr + 1] = one[1] nr += 2 } return Ipv6Addr{ addr: addr zone_id: params.zone_id } } // Ipv6Addr.from_segments creates new Ipv6Addr instance from eight 16-bit segments // with optional scope zone_id. pub fn Ipv6Addr.from_segments(seg [8]u16, params Ipv6AddrParams) !Ipv6Addr { return Ipv6Addr.new(seg[0], seg[1], seg[2], seg[3], seg[4], seg[5], seg[6], seg[7], params)! } // Ipv6Addr.from_octets creates new Ipv6Addr instance from 16 octets // with optional scope zone_id. pub fn Ipv6Addr.from_octets(addr [16]u8, params Ipv6AddrParams) !Ipv6Addr { params.validate()! return Ipv6Addr{ addr: addr zone_id: params.zone_id } } // Ipv6Addr.from_string parses addr and returns new Ipv6Addr instance. // The allowed formats are: // // * full length hexadecimal colon-separated address e.g. aaaa:bbbb:cccc:dddd:eeee:ffff:0000:1111; // * address with omitted leading zeros in hextets; // * address with omitted all-zeros hextets e.g. ::1; // * combined form with omitted all-zeros and leading zeros; // * mixed with dotted-decimal format e.g. ::ffff:192.168.3.12; // * address with scope zone identifier e.g. fe80::d08e:6658%eth0; // * address in square brackets: [a:b:c:d:e:f:0:1]. pub fn Ipv6Addr.from_string(addr string) !Ipv6Addr { if addr.is_blank() { return error('IP address cannot be blank') } if addr.contains('/') { return error("unexpected '/' in ${addr}") } addr_clean, zone_id := split_scope(addr.trim('[]')) or { return err } if addr_clean.count('::') > 1 { return error('too many :: in ${addr}') } if addr_clean[0] == u8(`:`) && !addr_clean.starts_with('::') { return error('leading : is allowed only as :: part in ${addr}') } if addr_clean[addr_clean.len - 1] == u8(`:`) && !addr_clean.ends_with('::') { return error('trailing : is allowed only as :: part in ${addr}') } mut hextets := addr_clean.split(':') if hextets.len < 3 { return error('at least 3 parts expected in ${addr}') } for i, hextet in hextets { if hextet.contains('.') && i == hextets.len - 1 { ip4 := Ipv4Addr.from_string(hextet) or { return error('invalid IPv6-embedded IPv4 address in ${addr}') } ip4_u8 := ip4.u8_array_fixed() hextets.delete(i) hextets << ip4_u8[0].hex() + ip4_u8[1].hex() hextets << ip4_u8[2].hex() + ip4_u8[3].hex() } } len_diff := 8 - hextets.len if len_diff < 8 && len_diff > 0 { for i := 0; i < len_diff + 1; i++ { // insert missing hextets with zero values hextets.insert(hextets.index(''), '0') } hextets.delete(hextets.index('')) // delete extra empty item } else if len_diff < 0 { // too many hextets (more than 8) in address return error('unable to parse IPv6 address from string ${addr}') } // replace empty strings with zeros for i := 0; i < hextets.len; i++ { if hextets[i] == '' { hextets[i] = '0' } } mut address := [16]u8{} mut i := 0 for hextet in hextets { in_hex := '0x' + hextet if !in_hex.is_hex() { return error('non-hexadecimal value ${hextet} in ${addr}') } mut pair := in_hex.u8_array() if pair.len == 1 { // add leading zero to fit into len=2 pair << u8(0) pair[0], pair[1] = pair[1], pair[0] } address[i] = pair[0] address[i + 1] = pair[1] i += 2 } return Ipv6Addr{address, zone_id} } // Ipv6Addr.from_bigint creates new Ipv6Addr from big.Integer with optional scope // zone_id. The integer sign will be discarded. `addr` must fit in 128 bit. pub fn Ipv6Addr.from_bigint(addr big.Integer, params Ipv6AddrParams) !Ipv6Addr { params.validate()! if addr.bit_len() > 128 { return error('${addr} overflows 128 bit') } mut address := [16]u8{} bytes, _ := addr.bytes() len_diff := 16 - bytes.len if len_diff == 0 { for i in 0 .. 16 { address[i] = bytes[i] } } else { mut i := 0 for pos in len_diff .. 16 { address[pos] = bytes[i] i++ } } return Ipv6Addr{ addr: address zone_id: params.zone_id } } // str returns string representation of IPv6 address in compact format. pub fn (a Ipv6Addr) str() string { return a.format(.compact | .dotted) } // format returns the IPv6 address as a string formatted according to the fmt rule. pub fn (a Ipv6Addr) format(fmt Ipv6AddrFormat) string { mut str := []string{} match true { fmt & .compact == .compact { if fmt & .dotted == .dotted { if a.is_ipv4_mapped() { return '::ffff:' + Ipv4Addr{[a.addr[12], a.addr[13], a.addr[14], a.addr[15]]!}.str() } if a.is_ipv4_compat() { return '::' + Ipv4Addr{[a.addr[12], a.addr[13], a.addr[14], a.addr[15]]!}.str() } } for i := 0; i <= 14; i += 2 { mut hextet := a.addr[i..i + 2].hex().trim_left('0') if hextet == '' { hextet = '0' } str << hextet } // Find largest sequence of zeros and replace it with empty string mut zeros_seq_begin := -1 mut zeros_seq_len := 0 mut max_zeros_seq_begin := -1 mut max_zeros_seq_len := 0 for i, hx in str { if hx == '0' { zeros_seq_len++ if zeros_seq_begin == -1 { zeros_seq_begin = i } if zeros_seq_len > max_zeros_seq_len { max_zeros_seq_len = zeros_seq_len max_zeros_seq_begin = zeros_seq_begin } } else { zeros_seq_len = 0 zeros_seq_begin = -1 } } if max_zeros_seq_len > 1 { if str.len == max_zeros_seq_begin + max_zeros_seq_len { str << '' } str.delete_many(max_zeros_seq_begin, max_zeros_seq_len) if max_zeros_seq_begin == 0 { str.insert(0, '') } str.insert(max_zeros_seq_begin, '') } if a.zone_id == none { return str.join(':') } return str.join(':') + '%' + (a.zone_id as string) } fmt & .verbose == .verbose { if fmt & .dotted == .dotted { if a.is_ipv4_mapped() { return '0000:0000:0000:0000:0000:ffff:' + Ipv4Addr{[a.addr[12], a.addr[13], a.addr[14], a.addr[15]]!}.str() } if a.is_ipv4_compat() { return '0000:0000:0000:0000:0000:0000:' + Ipv4Addr{[a.addr[12], a.addr[13], a.addr[14], a.addr[15]]!}.str() } } for i := 0; i <= 14; i += 2 { str << a.addr[i..i + 2].hex() } if a.zone_id == none { return str.join(':') } return str.join(':') + '%' + (a.zone_id as string) } else { return a.str() } } } // bigint returns IP address represented as big.Integer. pub fn (a Ipv6Addr) bigint() big.Integer { if a.addr == [16]u8{} { return big.zero_int } return big.integer_from_bytes(a.addr[..]) } // u8_array returns IP address represented as byte array. pub fn (a Ipv6Addr) u8_array() []u8 { return a.addr[..] } // u8_array_fixed returns IP address represented as fixed size byte array. pub fn (a Ipv6Addr) u8_array_fixed() [16]u8 { return a.addr } // segments returns an array of eight 16-bit IP address segments. pub fn (a Ipv6Addr) segments() [8]u16 { mut segments := [8]u16{} mut nr := 0 for i in 0 .. 8 { segments[i] = binary.big_endian_u16_fixed([a.addr[nr], a.addr[nr + 1]]!) nr += 2 } return segments } // with_scope returns IPv6 address with new zone_id. // Note: with_scope creates new Ipv6Addr, does not change the current. pub fn (a Ipv6Addr) with_scope(zone_id string) !Ipv6Addr { if zone_id.is_blank() || zone_id.contains('%') { return error('zone_id cannot be blank or contain % sign') } return Ipv6Addr{a.addr, zone_id} } // ipv4 returns IPv4 address converted from IPv4-mapped or IPv4-compatible IPv6 address. // Note: this function does not treat :: and ::1 addresses as IPv4-compatible ones. pub fn (a Ipv6Addr) ipv4() !Ipv4Addr { if a.is_ipv4_mapped() || a.is_ipv4_compat() { return Ipv4Addr{[a.addr[12], a.addr[13], a.addr[14], a.addr[15]]!} } return error('${a} is not IPv4-mapped or IPv4-compatible address') } // six_to_four returns embedded IPv4 address if the IPv6 address is 6to4. See RFC 3056. pub fn (a Ipv6Addr) six_to_four() !Ipv4Addr { if a.addr[..2] != [u8(0x20), 2] { return error('${a} is not a 6to4 address') } return Ipv4Addr{[a.addr[2], a.addr[3], a.addr[4], a.addr[5]]!} } // teredo returns embedded Teredo address. // See RFC 4380 and https://en.wikipedia.org/wiki/Teredo_tunneling pub fn (a Ipv6Addr) teredo() !TeredoAddr { if a.addr[..4] != [u8(0x20), 1, 0, 0] { return error('${a} is not a Teredo address') } return TeredoAddr{ server: Ipv4Addr{[a.addr[4], a.addr[5], a.addr[6], a.addr[7]]!} flags: binary.big_endian_u16(a.addr[8..10]) port: binary.big_endian_u16([~a.addr[10], ~a.addr[11]]) client: Ipv4Addr{[~a.addr[12], ~a.addr[13], ~a.addr[14], ~a.addr[15]]!} } } // bit_len returns number of bits required to represent IP address. pub fn (a Ipv6Addr) bit_len() int { return bit_len_128(a.addr) } // family returns the `net.AddrFamily` member corresponding to IP version. pub fn (a Ipv6Addr) family() net.AddrFamily { return .ip6 } // reverse_pointer returns a reverse DNS pointer name for IPv6 address. pub fn (a Ipv6Addr) reverse_pointer() string { return a.addr[..].hex().split('').reverse().join('.') + '.ip6.arpa' } // is_ipv4_mapped returns true if IPv6 address is IPv4-mapped. pub fn (a Ipv6Addr) is_ipv4_mapped() bool { return a.addr[..10].all(it == u8(0)) && a.addr[10] == 255 && a.addr[11] == 255 } // is_ipv4_compat returns true if IPv6 address is IPv4-compatible. // Note: loopback and unspecified addresses (::1 and :: respectively) are not // recognized as IPv4-compatible addresses. pub fn (a Ipv6Addr) is_ipv4_compat() bool { return a.addr[..12].all(it == u8(0)) && a.addr[12..16] !in [[u8(0), 0, 0, 0], [u8(0), 0, 0, 1]] } // is_site_local returns true if the address is reserved for site local usage. // See RFC 3879. pub fn (a Ipv6Addr) is_site_local() bool { return ipv6_site_local_network.contains(a) } // is_unique_local returns true if the address is unique local. See RFC 4193, RFC 8190. pub fn (a Ipv6Addr) is_unique_local() bool { return ipv6_unique_local_network.contains(a) } // is_link_local returns true if the address is allocated in link-local network. pub fn (a Ipv6Addr) is_link_local() bool { ip := a.ipv4() or { return ipv6_link_local_network.contains(a) } return ip.is_link_local() } // is_loopback returns true if the address is loopback i.e equals ::1. pub fn (a Ipv6Addr) is_loopback() bool { ip := a.ipv4() or { return a.addr == [u8(0), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]! } return ip.is_loopback() } // is_multicast returns true if the address is reserved for multicast use. pub fn (a Ipv6Addr) is_multicast() bool { ip := a.ipv4() or { return ipv6_multicast_network.contains(a) } return ip.is_multicast() } // is_unicast returns true if the address is unicast. pub fn (a Ipv6Addr) is_unicast() bool { return !a.is_multicast() } // is_private returns true if the address is not globally reachable. pub fn (a Ipv6Addr) is_private() bool { ip := a.ipv4() or { return ipv6_private_networks.any(it.contains(a) == true) && ipv6_private_networks_exceptions.all(it.contains(a) == false) } return ip.is_private() } // is_global return true if the address is globally reachable. pub fn (a Ipv6Addr) is_global() bool { return !a.is_private() } // is_reserved returns true if the address is allocated in reserved networks. pub fn (a Ipv6Addr) is_reserved() bool { ip := a.ipv4() or { return ipv6_reserved_networks.any(it.contains(a) == true) } return ip.is_reserved() } // is_unspecified returns true if IP address is unspecified i.e equals ::. pub fn (a Ipv6Addr) is_unspecified() bool { ip := a.ipv4() or { return a.addr == [16]u8{} } return ip.is_unspecified() } // is_netmask returns true if IP address is network mask. pub fn (a Ipv6Addr) is_netmask() bool { val := a.bigint().bitwise_xor(max_u128) + big.one_int return val.bitwise_and(val - big.one_int) == big.zero_int } // is_hostmask returns true if IP address is host mask. pub fn (a Ipv6Addr) is_hostmask() bool { addr_num := a.bigint() return (addr_num + big.one_int).bitwise_and(addr_num) == big.zero_int } // < returns true if a is lesser than b. pub fn (a Ipv6Addr) < (b Ipv6Addr) bool { return compare_128(a.addr, b.addr) == -1 } // == returns true if a equals b. pub fn (a Ipv6Addr) == (b Ipv6Addr) bool { return a.addr == b.addr } fn split_scope(addr string) !(string, ?string) { address, zone_id := addr.split_once('%') or { '', 'empty' } if zone_id == '' || zone_id.contains('%') { return error('invalid zone_id in ${addr}') } if address == '' { return addr, ?string(none) } return address, zone_id } @[params] pub struct Ipv6AddrParams { pub: zone_id ?string } fn (p Ipv6AddrParams) validate() ! { if p.zone_id != none { zone_id := p.zone_id as string if zone_id.is_blank() || zone_id.contains('%') { return error('zone_id cannot be blank or contain % sign') } } } @[flag] pub enum Ipv6AddrFormat { compact // e.g. fe80::896:7aff:e87:4ae3 verbose // e.g. fe80:0000:0000:0000:0896:7aff:0e87:4ae3 dotted // use dotted-decimal notation for IPv4-mapped and IPv4-compat addresses e.g. ::ffff:192.168.3.11 } // TeredoAddr represents the parsed Teredo address. See RFC 4380 Section 4. pub struct TeredoAddr { pub: server Ipv4Addr flags u16 port u16 client Ipv4Addr } // ipv6 returns Ipv6Addr created from Teredo address. @[direct_array_access] pub fn (t TeredoAddr) ipv6() Ipv6Addr { mut addr := [16]u8{} addr[0] = u8(0x20) addr[1] = u8(0x01) mut flags := [2]u8{} binary.big_endian_put_u16_fixed(mut flags, t.flags) addr[8] = flags[0] addr[9] = flags[1] mut port := [2]u8{} binary.big_endian_put_u16_fixed(mut port, t.port) addr[10] = ~port[0] addr[11] = ~port[1] for i := 4; i < 8; i++ { addr[i] = t.server.addr[i - 4] addr[i + 8] = ~t.client.addr[i - 4] } return Ipv6Addr{ addr: addr } } pub struct Ipv6Net { pub: network_address Ipv6Addr network_mask Ipv6Addr host_mask Ipv6Addr broadcast_address Ipv6Addr host_address ?Ipv6Addr prefix_len int mut: current big.Integer } // Ipv6Net.new creates new IPv6 network from given Ipv6Addr and prefix. pub fn Ipv6Net.new(addr Ipv6Addr, prefix int) !Ipv6Net { if prefix < 0 || prefix > 128 { return error('prefix length must be in range 0-128, not ${prefix}') } mut net_addr := addr mut host_addr := ?Ipv6Addr(none) net_mask := Ipv6Addr{ addr: bitwise_xor_128(max_128, right_shift_128(max_128, prefix)) } if bitwise_and_128(net_addr.addr, net_mask.addr) != net_addr.u8_array_fixed() { host_addr = Ipv6Addr{ addr: net_addr.addr } net_addr = Ipv6Addr{ addr: bitwise_and_128(net_addr.addr, net_mask.addr) } } host_mask := Ipv6Addr{ addr: bitwise_xor_128(net_mask.addr, max_128) } broadcast := Ipv6Addr{ addr: bitwise_or_128(net_addr.addr, host_mask.addr) } return Ipv6Net{ network_address: net_addr network_mask: net_mask host_mask: host_mask broadcast_address: broadcast host_address: host_addr prefix_len: prefix current: net_addr.bigint() } } // Ipv6Net.from_string parses cidr and creates new Ipv6Net. // All formats supported by Ipv6Addr.from_string is allowed here. // See also Ipv4Net.from_string for additional info about parsing strategy and // supported network/prefix variants. pub fn Ipv6Net.from_string(cidr string) !Ipv6Net { net_addr_str, prefix_str := cidr.split_once('/') or { cidr, '128' } mut net_addr := Ipv6Addr.from_string(net_addr_str)! mut prefix_len := 0 mut host_mask := Ipv6Addr{} mut net_mask := Ipv6Addr{ addr: [16]u8{init: 0xff} } mut host_addr := ?Ipv6Addr(none) if prefix_len_u64 := prefix_str.parse_uint(10, 64) { prefix_len = int(prefix_len_u64) if prefix_len < 128 { net_mask = Ipv6Addr{ addr: bitwise_xor_128(max_128, right_shift_128(max_128, prefix_len)) } } host_mask = Ipv6Addr{ addr: bitwise_xor_128(net_mask.addr, max_128) } } else { mut mask := Ipv6Addr.from_string(prefix_str)! match true { mask.is_netmask() || mask.addr == [16]u8{} || mask.addr == [16]u8{init: 0xff} { net_mask = mask host_mask = Ipv6Addr{ addr: bitwise_xor_128(mask.addr, max_128) } prefix_len = 128 - host_mask.bit_len() } mask.is_hostmask() { host_mask = mask prefix_len = 128 - host_mask.bit_len() if prefix_len < 128 { net_mask = Ipv6Addr{ addr: bitwise_xor_128(max_128, right_shift_128(max_128, prefix_len)) } } } else { return error('${mask} is not valid network or host mask in ${cidr}') } } } if bitwise_and_128(net_addr.addr, net_mask.addr) != net_addr.u8_array_fixed() { host_addr = Ipv6Addr{ addr: net_addr.u8_array_fixed() } net_addr = Ipv6Addr{ addr: bitwise_and_128(net_addr.u8_array_fixed(), net_mask.addr) } } broadcast := Ipv6Addr{ addr: bitwise_or_128(net_addr.addr, host_mask.addr) } return Ipv6Net{ network_address: net_addr network_mask: net_mask host_mask: host_mask broadcast_address: broadcast host_address: host_addr prefix_len: prefix_len current: net_addr.bigint() } } // Ipv6Net.from_bigint creates new IPv6 network from given addr and prefix. // `addr` must fit in 128 bits. pub fn Ipv6Net.from_bigint(addr big.Integer, prefix int) !Ipv6Net { if prefix < 0 || prefix > 128 { return error('prefix length must be in range 0-128, not ${prefix}') } if addr.bit_len() > 128 { return error('${addr} overflows 128 bit') } mut host_addr := ?Ipv6Addr(none) mut net_addr := addr net_mask := max_u128.bitwise_xor(max_u128.right_shift(u32(prefix))) if net_addr.bitwise_and(net_mask) != net_addr { host_addr = Ipv6Addr.from_bigint(net_addr)! net_addr = net_addr.bitwise_and(net_mask) } host_mask := net_mask.bitwise_xor(max_u128) broadcast := net_addr.bitwise_or(host_mask) return Ipv6Net{ network_address: Ipv6Addr.from_bigint(net_addr)! network_mask: Ipv6Addr.from_bigint(net_mask)! host_mask: Ipv6Addr.from_bigint(host_mask)! broadcast_address: Ipv6Addr.from_bigint(broadcast)! host_address: host_addr prefix_len: prefix current: net_addr } } // str returns string representation of IPv6 network in CIDR format. pub fn (n Ipv6Net) str() string { return n.format(.compact | .dotted | .with_prefix_len) } // format returns the IPv6 network as a string formatted according to the fmt rule. pub fn (n Ipv6Net) format(fmt Ipv6NetFormat) string { addr_fmt := Ipv6AddrFormat(fmt) match true { fmt & .with_prefix_len == .with_prefix_len { return n.network_address.format(addr_fmt) + '/' + n.prefix_len.str() } fmt & .with_network_mask == .with_network_mask { return n.network_address.format(addr_fmt) + '/' + n.network_mask.format(addr_fmt) } fmt & .with_host_mask == .with_host_mask { return n.network_address.format(addr_fmt) + '/' + n.host_mask.format(addr_fmt) } else { return n.format(fmt | .with_prefix_len) } } } // capacity returns a total number of addresses in the network. pub fn (n Ipv6Net) capacity() big.Integer { return (n.broadcast_address.bigint() - n.network_address.bigint()) + big.one_int } // next implements an iterator that iterates over all addresses in network // including network and broadcast addresses. // Example: // ``` // network := netaddr.Ipv6Net.from_string('fe80::/124')! // for addr in network { // println(addr) // } // ``` pub fn (mut n Ipv6Net) next() ?Ipv6Addr { if n.current >= n.broadcast_address.bigint() + big.one_int { return none } defer { n.current = n.current + big.one_int } return Ipv6Addr.from_bigint(n.current)! } // first returns the first usable host address in network. pub fn (n Ipv6Net) first() Ipv6Addr { if n.prefix_len in [127, 128] { return n.network_address } return Ipv6Addr.from_bigint(n.network_address.bigint() + big.one_int) or { panic(err) } } // last returns the last usable host address in network. pub fn (n Ipv6Net) last() Ipv6Addr { if n.prefix_len in [127, 128] { return n.broadcast_address } return Ipv6Addr.from_bigint(n.broadcast_address.bigint() - big.one_int) or { panic(err) } } // nth returns the Nth address in network. Supports negative indexes. pub fn (n Ipv6Net) nth(num big.Integer) !Ipv6Addr { mut addr := Ipv6Addr{} if num >= big.zero_int { addr = Ipv6Addr.from_bigint(n.network_address.bigint() + num)! } else { addr = Ipv6Addr.from_bigint(n.broadcast_address.bigint() + num + big.one_int)! } if n.contains(addr) { return addr } return error('unable to get ${num}th address') } // contains returns true if IP address is in the network. pub fn (n Ipv6Net) contains(addr Ipv6Addr) bool { return n.network_address <= addr && addr <= n.broadcast_address } // overlaps returns true if network partly contains in *other*, // in other words if the networks addresses sets intersect. pub fn (n Ipv6Net) overlaps(other Ipv6Net) bool { return other.contains(n.network_address) || (other.contains(n.broadcast_address) || (n.contains(other.network_address) || (n.contains(other.broadcast_address)))) } // subnets returns iterator that iterates over the network subnets partitioned by given *prefix* length. // Example: // ``` // network := netaddr.Ipv6Net.from_string('2001:db8:beaf::/56')! // subnets := network.subnets(64)! // for subnet in subnets { // println(subnet) // } // ``` pub fn (n Ipv6Net) subnets(prefix int) !Ipv6NetsIterator { if prefix > 128 || prefix < n.prefix_len { return error('prefix length must be in range ${n.prefix_len}-128, not ${prefix}') } return Ipv6NetsIterator{ prefix_len: prefix step: (n.host_mask.bigint() + big.one_int).right_shift(u32(prefix - n.prefix_len)) end: n.broadcast_address.bigint() current: n.network_address.bigint() } } // supernet returns IPv6 network containing the current network. pub fn (n Ipv6Net) supernet(prefix int) !Ipv6Net { if prefix < 0 || prefix > n.prefix_len { return error('prefix length must be in range 0-${n.prefix_len}, not ${prefix}') } if prefix == 0 { return n } net_addr := Ipv6Addr{ addr: bitwise_and_128(n.network_address.addr, left_shift_128(n.network_mask.addr, n.prefix_len - prefix)) } return Ipv6Net.new(net_addr, prefix)! } // is_subnet_of returns true if *other* contains the network. pub fn (n Ipv6Net) is_subnet_of(other Ipv6Net) bool { return other.network_address <= n.network_address && other.broadcast_address >= n.broadcast_address } // is_supernet_of returns true if the network contains *other*. pub fn (n Ipv6Net) is_supernet_of(other Ipv6Net) bool { return n.network_address <= other.network_address && n.broadcast_address >= other.broadcast_address } // is_site_local returns true if the network is site-local. pub fn (n Ipv6Net) is_site_local() bool { return n.network_address.is_site_local() && n.broadcast_address.is_site_local() } // is_unique_local returns true if the network is unique-local. pub fn (n Ipv6Net) is_unique_local() bool { return n.network_address.is_unique_local() && n.broadcast_address.is_unique_local() } // is_link_local returns true if the network is link-local. pub fn (n Ipv6Net) is_link_local() bool { return n.network_address.is_link_local() && n.broadcast_address.is_link_local() } // is_loopback returns true if this is a loopback network. pub fn (n Ipv6Net) is_loopback() bool { return n.network_address.is_loopback() && n.broadcast_address.is_loopback() } // is_multicast returns true if the network is reserved for multicast use. pub fn (n Ipv6Net) is_multicast() bool { return n.network_address.is_multicast() && n.broadcast_address.is_multicast() } // is_unicast returns true if the network is unicast. pub fn (n Ipv6Net) is_unicast() bool { return !n.is_multicast() } // is_private returns true if the network is not globally reachable. pub fn (n Ipv6Net) is_private() bool { return n.network_address.is_private() && n.broadcast_address.is_private() } // is_global return true if the network is globally reachable. pub fn (n Ipv6Net) is_global() bool { return !n.is_private() } // is_reserved returns true if the network is reserved. pub fn (n Ipv6Net) is_reserved() bool { return n.network_address.is_reserved() && n.broadcast_address.is_reserved() } // is_unspecified returns true if the network is ::/0. pub fn (n Ipv6Net) is_unspecified() bool { return n.network_address.is_unspecified() && n.broadcast_address.is_unspecified() } // < returns true if the network is lesser than other network. pub fn (n Ipv6Net) < (other Ipv6Net) bool { if n.network_address != other.network_address { return n.network_address < other.network_address } if n.network_mask != other.network_mask { return n.network_mask < other.network_mask } return false } // == returns true if networks equals. pub fn (n Ipv6Net) == (other Ipv6Net) bool { return n.network_address == other.network_address && n.network_mask == n.network_mask } @[flag] pub enum Ipv6NetFormat { compact verbose dotted with_prefix_len with_host_mask with_network_mask } pub struct Ipv6NetsIterator { prefix_len int step big.Integer end big.Integer mut: current big.Integer } // next implements the iterator interface for IP network subnets. pub fn (mut iter Ipv6NetsIterator) next() ?Ipv6Net { if iter.current >= iter.end + big.one_int { return none } defer { iter.current += iter.step } return Ipv6Net.from_bigint(iter.current, iter.prefix_len)! }